

UCHS Computer Science 1

Arduino

Name: _________________________

UCHS Computer Science 1
Arduino Part 1: Setup and Introduction

Introduction

Some of the key features of the Arduino Uno include:

1. An open source design. The advantage of it being open source is that it has a large community of
people using and troubleshooting it. This makes it easy to find someone to help you debug your
projects.

2. An easy USB interface . The chip on the board plugs straight into your USB port and registers on
your computer as a virtual serial port. This allows you to interface with it as through it were a serial
device. The benefit of this setup is that serial communication is an extremely easy (and time-tested)
protocol, and USB makes connecting it to modern computers really convenient.

3. Very convenient power management and built-in voltage regulation. You can connect an external power
source of up to 12v and it will regulate it to both 5v and 3.3v. It also can be powered directly off of a
USB port without any external power.

4. An easy-to-find, and dirt cheap, microcontroller "brain." The ATmega328 chip retails for about $2.88
on Digikey. It has countless number of nice hardware features like timers, PWM pins, external and
internal interrupts, and multiple sleep modes. Check out the official datasheet for more details. A
16mhz clock. This makes it not the speediest microcontroller around, but fast enough for most
applications.

5. 32 KB of flash memory for storing your code.

6. 13 digital pins and 6 analog pins. These pins allow you to connect external hardware to your Arduino.
These pins are key for extending the computing capability of the Arduino into the real world. Simply
plug your devices and sensors into the sockets that correspond to each of these pins and you are good
to go.

7. An ICSP connector for bypassing the USB port and interfacing the Arduino directly as a serial
device. This port is necessary to re-bootload your chip if it corrupts and can no longer talk to your
computer.

8. An on-board LED attached to digital pin 13 for fast an easy debugging of code.

9. And last, but not least, a button to reset the program on the chip.

Getting Familiar with the Uno

Setup

Before you can start doing anything with the Arduino, you need to download and install the Arduino IDE
(integrated development environment). The Arduino Programmer is based on the Processing IDE and
uses a variation of the C and C++ programming languages.

Step 1: Download Software: https://www.arduino.cc/en/Main/Software

r Skip the donate and just download now. This will download a zip file to your computer.
r Create a folder for Arduino in your CS1 file folder on your computer, and save this file there.
r Open the zip file and unzip the program.
r Create a shortcut on your computer.

--

Step 2: Connect the Arduino to your computer

r Connect the Arduino to your computer's USB port.
r Please note that although the Arduino plugs into your computer, it is not a true USB device. The

board has a special chip that allows it to show up on your computer as a virtual serial port when it
is plugged into a USB port. This is why it is important to plug the board in. When the board is not
plugged in, the virtual serial port that the Arduino operates upon will not be present (since all of
the information about it lives on the Arduino board).

r It is also good to know that every single Arduino has a unique virtual serial port address. This
means that every time you plug in a different Arduino board into your computer, you will need to
reconfigure the serial port that is in use.

r The Arduino Uno requires a male USB A to male USB B cable .

--

ß- Select your

operating system

Step 3: Adjust the Settings

r To set the board, go to the following:

 Tools --> Boards

r Select the version of board that you are using.
r To set the serial port, go to the following:

 Tools --> Serial Port

r Select the serial port that looks like:

 /dev/tty.usbmodem [random numbers]

--

r Arduino programs are called sketches. The Arduino programmer comes with a ton of example
sketches preloaded. This is great because even if you have never programmed anything in your
life, you can load one of these sketches and get the Arduino to do something.

r To get the LED on the Arduino which is tied to digital pin 13, let's load the blink example.
The blink example can be found here:
 Files --> Examples --> Basics --> Blink

r The blink example basically sets pin D13 as an output and then blinks the test LED on the Arduino
board on and off every second.

r Once the blink example is open, it can be installed onto the ATMEGA328 chip by pressing the
upload button, which looks like an arrow pointing to the right.

r Notice that the surface mount status LED connected to pin 13 on the Arduino will start to blink.
You can change the rate of the blinking by changing the length of the delay and pressing the
upload button again.

--

Writing your Own Sketch

Some important things to keep in mind when writing your own code:

r An Arduino program is called a sketch.
r All code in an Arduino sketch is processed from top to bottom.
r Arduino sketches are typically broken into five parts.

1. The sketch usually starts with a header that explains what the sketch is doing, and who wrote
it.

2. Next, it usually defines global variables. Often, this is where constant names are given to the
different Arduino pins.

3. After the initial variables are set, the Arduino begins the setup routine. In the setup function,
we set initial conditions of variables when necessary, and run anypreliminary code that we only
want to run once. This is where serial communication is initiated, which is required for running the
serial monitor.

4. From the setup function, we go to the loop routine. This is the main routine of the sketch. This
is not only where your main code goes, but it will be executed overand over, so long as the sketch
continues to run.

5. Below the loop routine, there is often other functions listed. These functions are user-defined
and only activated when called in the setup and loop routine. When these functions are called, the
Arduino processes all the code in the function from top to bottom and then goes back to the next
line in the sketch where it left off when the function was called. Functions are good because they
allow you to run standard routines - over and over - without having to write the same lines of code
over and over. You can simply call upon a function multiple times, and this will free up memory on
the chip because the function routine is only written once. Italso makes code easier to read.

r All of that said, the only two parts of the sketch which are mandatory are the Setup and Loop
routines.

r Code must be written in the Arduino Language, which is roughly based on C.

r Almost all statements written in the Arduino language must end with a ;
r Conditionals (such as if statements and for loops) do not need a ;
r Conditionals have their own rules and can be found under "Control Structures" on the Arduino

Language page
r Variables are storage compartments for numbers. You can pass values into and out of variables.

Variables must be defined (stated in the code) before they can be used and need to have a data
type associated with it.

--

To Start Programming:

 First, open the BareMinimum sketch, which can be found at:

File --> Examples --> 1.Basic --> BareMinimum

The BareMinimum Sketch should look like this:

void setup() {

// put your setup code here, to run once:

}

void loop() {

// put your main code here, to run repeatedly:

}

PROJECT #2 BLINK

REQUIRED CHALLENGES:

1. Add header comments to your sketch
 /* Title:
 * Description:
 * Author:
 * Date:
 */

2. Try changing the 1000 in the above delay() functions to different numbers and see how it affects the timing.
Smaller values will make the loop run faster. (Why?)

3. Decrease the delay to 10 ms. Can you still see it blink?

4. Find the smallest delay that you can still see a blink. What is this frequency?

5. Modify the code above to resemble a heartbeat.

6. Modify the code above to FLASH SOS repeatedly

Draw a schematic
of this circuit in

your Arduino
Schematic
Handout

REMEMBER to take photos of each
project and challenge!

PROJECT #3 Push Button

REQUIRED CHALLENGE: Answer on schematic sheet,

1. What is the variable button State used for? How is used in this program?

Draw a
schematic

of this
circuit in

your
Arduino

Schematic
Handout

REMEMBER to take
photos of each

project and
challenge!

PROJECT #4 Control LEDs

Create a Circuit and write a program as follows:

r When the program starts, the green light should be on (SwitchState is LOW),
r When the user presses and holds the button, the red lights should come on and start flashing
r When the user releases the button, the green light should turn on and red lights off.

Parts Needed: switch, 3 LEDs (1 green, 2 red), 220 ohm resistor, 10K ohm resistor.

REQUIRED CHALLENGES:

1. Change your program to have the red lights blinking when
the program starts, and the green light to turn on when
the button is pressed.

Draw a schematic
of this circuit in your
Arduino Schematic

Handout

REMEMBER to take photos of each
project and challenge!

PROJECT #5 FADE

How to fade an LED

r Use pin 9 and the analog function
r The analogWrite() function uses PWM (Pulse with Modulation), so if you want to change the pin

you’re using, be sure to use another PWM capable (~) pin.

Parts needed: LED, 220 ohm resistor

REQUIRED CHALLENGES:

1. Explain what the if statement means. Why is it necessary for the program to run?

2. What happens if you change the delay?

Draw a schematic
of this circuit in your
Arduino Schematic

Handout

REMEMBER to take photos of each
project and challenge!

PROJECT #6 Potentiometer
This example shows you how to read an analog input pin, map the result to a range from 0 to 255, use that result to
set the pulse width modulation (PWM) of an output pin to dim or brighten an LED and print the values on the serial
monitor of the Arduino Software (IDE).

Parts Needed: RED LED, 220 ohm resistor, potentiometer

r You may have come across the question of how to change the brightness of a LED, without having to keep
switching parts. Quite simply, the solution to this issue is a potentiometer.

r Potentiometers are variable resistors and they function to alter their resistance via a knob or dial. You
have probably used one before by adjusting the volume on your stereo or using a light dimmer.

r Potentiometers have a range of resistance. They can be attuned from zero ohms to whatever maximum
resistance that is specific to it. For example, a potentiometer of 10 kΩ can be adjusted from 0 Ω to its
maximum of 10 kΩ.

r In this project, you will learn how to use a potentiometer with and without Arduino board to fade an LED.
r You will also learn how to use analogRead() and map() functions.

Draw a schematic
of this circuit in your
Arduino Schematic

Handout

REMEMBER to take photos of each
project and challenge!

PROJECT #7 Temperature Sensor
r How hot are you? Use analog input, you are going to register just how hot you really are!
r Analog sensors measure things like temperature or light. To do this, you will take advantage of the

Arduino’s built-in Analog to Digital Converter (ADC). Analog in pins A0-A5 can report back a value between
0-1023, which maps to a range from 0 to 5 volts.

r You’ll be using a temperature sensor to measure how warm your skin is.
r In the sketch for this project, you will read the sensor’s output and use it to turn LEDs on and off,

indicating how warm you are.

PROJECT #8 RGB LED and Color Mixer
r Walk through the “main” colors the RGB LED light can produce
r Show a rainbow of colors!
r Learn about functions - Breaking down tasks down into individual functions like this makes your code easier

to follow, and it allows parts of your code to be re-used.
r Write your own color mixing function and add it to the sketch

Components:
3 300 Ω Resistors
RGB LED

Notice the order of the pins. The RGB
LED has 4 legs.
1: RED
2: GROUND
3: GREEN
4: BLUE

You will use the analogWrite function of
Arduino to control the color of the LED.

At first glance, RGB (Red, Green, Blue) LEDs look just like regular LEDs, however, inside the usual LED package,
there are actually three LEDs, one red, one green and yes, one blue. By controlling the brightness of each of the
individual LEDs you can mix pretty much any color you want.

We mix colors just like you would mix audio with a 'mixing board' or paint on a palette - by adjusting the
brightness of each of the three LEDs. The hard way to do this would be to use different value resistors (or
variable resistors) as we played with in lesson 2. That's a lot of work! Fortunately for us, the Arduino has
an analogWrite function that you can use with pins marked with a ~ to output a variable amount of power to the
appropriate LEDs.

Colors

The reason that you can mix any color you like by varying the quantities of red, green and blue light is that
your eye has three types of light receptor in it (red, green and blue). Your eye and brain process the amounts
of red, green and blue and convert it into a color of the spectrum.

In a way, by using the three LEDs we are playing a trick on the eye. This same idea is used in TVs, where the
LCD has red, green and blue color dots next to each other making up each pixel.

If we set the brightness of all three LEDs to be the same, then the overall color of the light will be white. If
we turn off the blue LED, so that just the red and green LEDs are the same brightness, then the light will
appear yellow.

We can control the brightness of each of the red, green and blue parts of the LED separately, making it
possible to mix any color we like.

Black is not so much a color as an absense of light. So the closest we can come to black with our LED is to
turn off all three colors.

Draw a schematic
of this circuit in your
Arduino Schematic

Handout

REMEMBER to take photos of each
project and challenge!

MORE

REQUIRED CHALLENGES:

1. Add your own function to the program that will just display a solid olive color LED.

2. Add your own function to the program that will cycle through 8 different non-standard colors. Make sure you
indicate in your comments what the colors are. You may need to refer to a RGB color chart.

3. Be Creative! Think of something else you can program with the RGB LED and “just do it!”

