UCHS Computer Science 1

Arduino

Name:

UCHS Computer Science 1
Arduino Part 1: Setup and Introduction

Introduction

Some of the key features of the Arduino Uno include:

1.

An open source design. The advantage of it being open source is that it has a large community of
people using and troubleshooting it. This makes it easy to find someone to help you debug your
projects.

. An easy USB inferface . The chip on the board plugs straight into your USB port and registers on

your computer as a virtual serial port. This allows you fo interface with it as through it were a serial
device. The benefit of this setup is that serial communication is an extremely easy (and time-tested)
protocol, and USB makes connecting it to modern computers really convenient.

. Very convenient power management and built-in voltage regulation. You can connect an external power

source of up to 12v and it will regulate it to both Bv and 3.3v. It also can be powered directly off of a
USB port without any external power.

. An easy-to-find, and dirt cheap, microcontroller "brain." The ATmega328 chip retails for about $2.88

on Digikey. It has countless number of nice hardware features like timers, PWM pins, external and
internal interrupts, and multiple sleep modes. Check out the official datasheet for more details. A
16mhz clock. This makes it not the speediest microcontroller around, but fast enough for most
applications.

. 32 KB of flash memory for storing your code.

. 13 digital pins and 6 analog pins. These pins allow you to connect external hardware to your Arduino.

These pins are key for extending the computing capability of the Arduino into the real world. Simply
plug your devices and sensors into the sockets that correspond to each of these pins and you are good
to go.

. An ICSP connector for bypassing the USB port and interfacing the Arduino directly as a serial

device. This port is necessary to re-bootload your chip if it corrupts and can no longer talk to your
computer.

. An on-board LED attached to digital pin 13 for fast an easy debugging of code.

. And last, but not least, a button to reset the program on the chip.

Getting Familiar with the Uno

Image Notes

1. Digital Pins

. USB port

. External power socket

. Reset button

. 16MHZ crystal

ICSP - in circuit serial programmer
. ATMEGA328

. Analog in

. Power management sockets

10. virtual serial port chip

11. Status LED connected to pin 13

©CONOU A WN

Setup

Before you can start doing anything with the Arduino, you need to download and install the Arduino IDE
(integrated development environment). The Arduino Programmer is based on the Processing IDE and
uses a variation of the C and C++ programming languages.

Step 1.

Download Software: hitps.://www.arduino.cc/en/Main/Software

Download the Arduino IDE

OO,

ARDUINO 1.8.10

The open-source Arduino Software (IDE) makes it easy to
write code and upload it to the board. It runs on
Windows, Mac OS X, and Linux. The environment is
written in Java and based on Processing and other open-
source software.

This software can be used with any Arduino board.

Refer to the Getting Started page for Installation
instructions.

Windows Installer, for Windows XP and up
Windows zIP file for non admin install

Windows app Requires Win 810r 10

Mac OS X 10.8 Mountain Lion or newer

Linux 32 bits
Linux 64 bits
Linux ARM 32 bits
Linux ARM 64 bits

&- Select your

operating system

Release Notes

Source Code
Checksums (sha512)

O Skip the donate and just download now. This will download a zip file fo your computer.

O Create a folder for Arduino in your CS1 file folder on your computer, and save this file there.
O Open the zip file and unzip the program.
O Create a shortcut on your computer.

Step 2: Connect the Arduino to your computer

O Connect the Arduino to your computer's USB port.
O Please note that although the Arduino plugs into your computer, it is not a frue USB device. The
board has a special chip that allows it to show up on your computer as a virtual serial port when it
is plugged into a USB port. This is why it is important to plug the board in. When the board is not
plugged in, the virtual serial port that the Arduino operates upon will not be present (since all of
the information about it lives on the Arduino board).
It is also good o know that every single Arduino has a unique virtual serial port address. This
means that every time you plug in a different Arduino board into your computer, you will need to
reconfigure the serial port that is in use.

O The Arduino Uno requires a male USB A to male USB B cable .

Step 3. Adjust the Settings n T vel B &
Auto Format #T | Boards Manager...
. Archive Sketch
D TO seT The bOClr‘d, 90 1'0 fhe fO”OWlngl Fix Encoding & Reload Arduino AVR Boa
Manage Libraries... | Arduino Ydn
Serial Monitor {88M v Arduino/Genuino Uno
Serial Plotts 8L Arduino Duemilanove or Diecimila
Tools --> Boards | Serial Plotter S
L WIFi101 / WiFiNINA Firmware Updater Arduino/Genuino Mega or Mega 2560
. . Arduino Mega ADK
O Select the version Of board that you are USlng.) Port ,I Arduino Leonardo
. . Get Board Info Arduino Leonardo ETH
O To set the serial pOf‘T, go to the followmg: 1 Arduino/Genuino Micro
) Programmer: "Arduino Gemma" > Arduino Esplora
Burn Bootloader Arduino Mini
Tools --> Serial Port - | Arduino Ethemnet
O Select the serial port that looks like:
/dev/tty.usbmodem [random numbers]
m Help ™ & 9O = o) 84% @)
Auto Format 3T no 1.8.10
Archive Sketch
Fix Encoding & Reload
SR e i _
Serial Monitor £ 8M
Serial Plotter L
L WIiFi101 / WiFiNINA Firmware Updater
Board: "Arduino/Genuino Uno" >
)
Get Board Info /dev/cu.Bluetooth-Incoming-Port

/dev/cu.MarysMacBookPro-Bluetoo

) Programmer: "Arduino Gemma" V /dev/cu.usbmodem14121 (Arduino/Genuino Uno)

Burn Bootloader

#1 - Test Arduino

The first project is one of the most basic and simple circuits you can create with

Arduino. This project will test your Arduino by blinking an LED that is connected

directly to the board.

0

Arduino programs are called sketches. The Arduino programmer comes with a ton of example
sketches preloaded. This is great because even if you have never programmed anything in your
life, you can load one of these sketches and get the Arduino to do something.

To get the LED on the Arduino which is tied to digital pin 13, let's load the blink example.

The blink example can be found here:

Files --> Examples --> Basics --> Blink

The blink example basically sets pin D13 as an output and then blinks the test LED on the Arduino
board on and of f every second.

Once the blink example is open, it can be installed onto the ATMEGA328 chip by pressing the
upload button, which looks like an arrow pointing to the right.

Notice that the surface mount status LED connected to pin 13 on the Arduino will start to blink.
You can change the rate of the blinking by changing the length of the delay and pressing the
upload button again.

> Edit Sketch Tools Help
New #EN Blink | Arduino 1.i
Open... #$0
Open Recent »
Sketchbook »
| Close BW | AnalogReadSerial
. Save #S 02.Digital > BareMinimum
= SaveAs... ©%S | 03.Analog » | Blink
04.Communication > DigitalReadSerial
f Palge SElD o3ep 05.Control > Fade
AT #P | 06.Sensors > ReadAnalogVoltage
ottt FTtZgerara 07.Display > |
08.Strings >

Nnn 11D

Writing your Own Sketch

Some important things to keep in mind when writing your own code:

O An Arduino program is called a sketfch.
O All code in an Arduino sketch is processed from top to bottom.
O Arduino sketches are typically broken into five parts.

1. The sketch usually starts with a header that explains what the sketch is doing, and who wrote
it.

2. Next, it usually defines global variables. Often, this is where constant names are given to the
different Arduino pins.

3. After the initial variables are set, the Arduino begins the setup routine. In the setup function,
we set initial conditions of variables when necessary, and run anypreliminary code that we only
want to run once. This is where serial communication is initiated, which is required for running the
serial monitor.

4. From the setup function, we go to the loop routine. This is the main routine of the sketch. This
is not only where your main code goes, but it will be executed overand over, so long as the sketch
continues to run.

5. Below the loop routine, there is often other functions listed. These functions are user-defined
and only activated when called in the setup and loop routine. When these functions are called, the
Arduino processes all the code in the function from top to bottom and then goes back to the next
line in the sketch where it left of f when the function was called. Functions are good because they
allow you to run standard routines - over and over - without having to write the same lines of code
over and over. You can simply call upon a function multiple times, and this will free up memory on
the chip because the function routine is only written once. I'talso makes code easier to read.

O All of that said, the only two parts of the sketch which are mandatory are the Setup and Loop
routines.
O Code must be written in the Arduino Language, which is roughly based on C.

O Almost all statements written in the Arduino language must end with a;

Conditionals (such as if statements and for loops) do not need a ;

O Conditionals have their own rules and can be found under "Control Structures" on the Arduino
Language page

O Variables are storage compartments for numbers. You can pass values into and out of variables.
Variables must be defined (stated in the code) before they can be used and need to have a data
type associated with it.

a

To Start Programming:

First, open the BareMinimum sketch, which can be found at:
File --> Examples --> 1.Basic --> BareMinimum

The BareMinimum Sketch should look like this:

void setup() {

// put your setup code here, to run once:

}

void loop() {

// put your main code here, to run repeatedly:

}

PROJECT #2 BLINK

This project is identical to project #1 except that we will be building it on a
breadboard. Once complete, the LED should turn on for a second and then off for a
second in a loop.

Parts Needed

e (1) Arduino Uno ;oid setupQ)
* (1)USB A-to-B Cable pinMode(13, OUTPUT);
¢ (1) Breadboard - Half Size 1
e (1) LED 5mm
e (1) 220 Q Resistor void loop()
e (2) Jumper Wires { . .
digitalWrite(13, HIGH); // Turn on the LED
Project Diagram delay(1000); // Wait for one second
digitalWrite(13, LOW); // Turn off the LED
delay(1000); // Wait for one second
ks
Draw a schematic

of this circuit in
your Arduino
Schematic
Handout

REMEMBER to take photos of each
project and challenge!

REQUIRED CHALLENGES:

1. Add header comments to your sketch
/* Title:
* Description:
* Author:
* Date:
*/

2. Try changing the 1000 in the above delay() functions to different numbers and see how it affects the timing.
Smaller values will make the loop run faster. (Why?)

3. Decrease the delay to 10 ms. Can you still see it blink?
4. Find the smallest delay that you can still see a blink. What is this frequency?
5. Modify the code above to resemble a heartbeat.

6. Modify the code above to FLASH SOS repeatedly

PROJECT #3 Push Button Project Diagram

Using a push button switch, you will be able to turn on and off an LED.

Parts Needed

(1)
e (1)
(1)
(1)
e (1)
)
)
)

(
°
(

1) Arduino Uno

1) USB A-to-B Cable

1) Breadboard - Half Size
1) LED 5mm

220 Q Resistor

1) 10K Q Resistor

1) Push Button Switch

6) Jumper Wires

]
]
»
1
a
c
5
o

e\ -

©NN

.\:-

Co~N OV B WN -

X}

10
11
12
13
14
15
16
17
18
19
20
21
22
23

const int buttonPin =2;
const int ledPin=8;

int buttonState = 0;

void setup() {

// put your setup code here, to run once:
pinMode(ledPin, OUTPUT);
pinMode(buttonPin, INPUT);

}

void loop() n
// put your main code here, to run repeatedly:

buttonState = digitalRead(buttonPin);
if (buttonState == HIGH)

{
digitalWrite(ledPin, HIGH);

} else{
digitalWrite(ledPin,LOW);

}

}

REQUIRED CHALLENGE: Answer on schematic sheet,

1. What is the variable button State used for? How is used in this program?

Draw o
schematic
of this
circuit in

your
Arduino
Schematic
Handout

REMEMBER to take
photos of each
project and
challenge!

PROJECT #4 Control LEDs

Create a Circuit and write a program as follows:

Draw a schematic
of this circuit in your
Arduino Schematic
Handout

REMEMBER to fake photos of each
project and challenge!

O When the program starts, the green light should be on (SwitchState is LOW),
O When the user presses and holds the button, the red lights should come on and start flashing
O When the user releases the button, the green light should turn on and red lights off.

Parts Needed: switch, 3 LEDs (1 green, 2 red), 220 ohm resistor, 10K ohm resistor.

BUILD THE

CIRCUIT

Fio 1

5V

PUSH
BUTTON

REQUIRED CHALLENGES:

1. Change your program to have the red lights blinking when
the program starts, and the green light to turn on when
the button is pressed.

Wire up your breadboard to the Arduino’s 5V and ground
connections, just like the previous project. Place the two red
LEDs and one green LED on the breadboard. Attach the cathode
(short leg) of each LED to ground through a 220-ohm resistor.
Connect the anode (long leg) of the green LED to pin 3. Connect
the red LEDs’ anodes to pins 4 and 5, respectively.

Place the switch on the breadboard just as you did in the previous
project. Attach one side to power, and the other side to digital
pin 2 on the Arduino. You'll also need to add a 10k-ohm resistor
from ground to the switch pin that connects to the Arduino.
That pull-dowr resistor connects the pin to ground when the
switch is open, so it reads LOW when there is no voltage coming
in through the switch.

spaceship-interface.ino

1 int switchState = 0;

2

void setup() {

5 pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
pinMode(2, INPUT);

10 }

1

12 void loop() {

13 // put your main code here, to run repeatedly:
4

15 switchState = digitalRead(2);

17 if(switchState == LOW){
1 digitalWrite(3, HIGH);
19 digitalWrite(4, LOW);
20 digitalWrite(5, LOW);
21

22 } else {

23 digitalWrite(3, LOW);
24 digitalWrite(4, LOW);
25 digitalWrite(5, HIGH);
27 delay(250);

29 digitalWrite(4, HIGH);
30 digitalWrite(5, LOW);
31

32 delay(250);

3 }

PROJECT #5 FADE
How to fade an LED

 use pin 9 and the analog function

O The analogWrite() function uses PWM (Pulse with Modulation), so if you want to change the pin
you're using, be sure o use another PWM capable (~) pin.

Parts needed: LED, 220 ohm resistor

L - L L L L
.. - L L O L O ..
L L L L N I B I B L B -
L L L B O B N B -
L L L L I B B B B A -
L L L L I L B -
L L L L I B B -
L R .-, L L L I I B B B B A -
L L L L I L I B I -
L L L L I L I B -
L -w L I B N I B B -
L L L L I I -
LA - I. - L L O ..
II L .. L L L .. -
int led = 9; // the PWM pin the LED is attached to
int brightness = 0; // how bright the LED is Df‘Qw Q SChematic

int fadeAmount = 5; // how many points to fade the LED by

of this circuit in your

// the setup routine runs once when you press reset: ° H

void setup() { Arduino Schematic
// declare pin 9 to be an output: Handout
pinMode(led, OUTPUT);

¥ REMEMBER to take photos of each

7 /
// the loop routine runs over and over again forever: project and challenge!

void loop() {
// set the brightness of pin 9:
analogWrite(led, brightness);

// change the brightness for next time through the loop:
brightness = brightness + fadeAmount;

// reverse the direction of the fading at the ends of the fade:
if (brightness <= @ || brightness >= 255) {

fadeAmount = -fadeAmount;
}
// wait for 30 milliseconds to see the dimming effect
delay(30);

REQUIRED CHALLENGES:

1. Explain what the if statement means. Why is it necessary for the program to run?

2. What happens if you change the delay?

PROJECT #6 Potentiometer

This example shows you how to read an analog input pin, map the result to a range from O to 255, use that result to
set the pulse width modulation (PWM) of an output pin to dim or brighten an LED and print the values on the serial

monitor of the Arduino Software (IDE).

Parts Needed: RED LED, 220 ohm resistor, potentiometer

O You may have come across the question of how to change the brightness of a LED, without having to keep
switching parts. Quite simply, the solution to this issue is a potentiometer.

O Potentiometers are variable resistors and they function to alter their resistance via a knob or dial. You
have probably used one before by adjusting the volume on your stereo or using a light dimmer.

O Potentiometers have a range of resistance. They can be attuned from zero ohms to whatever maximum
resistance that is specific to it. For example, a potentiometer of 10 k(2 can be adjusted from O (2 to its

maximum of 10 k(2.

O Inthis project,you will learn how to use a potentiometer with and without Arduino board to fade an LED.
O You will also learn how to use analogRead() and map() functions.

-

LED
Red (633nm)

°

@ RS

B

>

3

a

c

-

3

o,

....... PPN < <. 6:9.5.5 9.6 S-0.05% /956696
....... sgeeseseresservssernenn
R R R R
....... efececcrectrrtsrrnenen
R A EEEE
. teee seees seese seews

Draw a schematic
of this circuit in your
Arduino Schematic
Handout

REMEMBER to fake photos of each
project and challenge!

//Constants:
const int ledPin
const int potPin

//Nariables:
int value; //save analog value

void setup(){

//Input or output?

pinMode(ledPin, OUTPUT);
pinMode(potPin, INPUT); //Optional

}
void loop(){

value = analogRead(potPin);

analogWrite(ledPin, value);
delay(100);

9; //pin 9 has PWM funtion
A@; //pin AQ to read analog input

//Read and save analog value from potentiometer
value = map(value, 0, 1023, @, 255); //Map value 0-1023 to ©0-255 (PWM)

//Send PWM value to led
//Small delay

PROJECT #7 Temperature Sensor

O How hot are you? Use analog input, you are going to register just how hot you really are!

O Analog sensors measure things like temperature or light. To do this, you will take advantage of the
Arduino’s built-in Analog to Digital Converter (ADC). Analog in pins AO-A5 can report back a value between
0-1023, which maps to a range from O to 5 volts.

O You'll be using a temperature sensor to measure how warm your skin is.

O Inthe sketch for this project, you will read the sensor's output and use it to turn LEDs on and off,
indicating how warm you are.

The components

Arduino UNO

o Breadboard

« Jumper wires

* LEDs

e 220 ohm resistors

+ TMP36 temperature sensor

DICITAL

ab + -| Place the TMP36 on the breadboard with the rounded part fac-
: : » »| ing away from the Arduino (the order of the pins is important!)
m-n : : as shown in Fig. 2. Connect the left pin of the flat facing side to
: : o/ » »| power, and the right pin to ground. Connect the center pin to pin
- 5 Aoon your Arduino. This is analog input pin O.

n . .

: wll® e Attach the cathode (short leg) of eact of the LEDs you're using to

- m "I"; : : ground through a 220-ohm resistor. Connect the anodes of the

ARl zem LEDs to pins 2 through 4. These will be the indicators for the project.

R

[¥

mRllcem : :

: : iy LR

Py

AMALOG IN ’ = A 24 |

+ & E s
P EE e e e

5V

TEMPERATURE
SENSOR

// named constant for the pin the sensor is connected to
const int sensorPin = AQ;

// room temperature in Celsius

const float baselineTemp = 20.0;

void setup() {
// open a serial connection to display values
Serial.begin(9600);
// set the LED pins as outputs
// the for() loop saves some extra coding
for (int pinNumber = 2; pinNumber < 5; pinNumber++) {
pinMode(pinNumber, OUTPUT);
digitalWrite(pinNumber, LOW);
H
}

void loop() {
// read the value on AnalogIn pin @ and store it in a variable
int sensorVal = analogRead(sensorPin);

// send the 10-bit sensor value out the serial port
Serial.print("sensor Value: ");l
Serial.print(sensorVal);

// convert the ADC reading to voltage
float voltage = (sensorVal / 1024.0) * 5.0;

// Send the voltage level out the Serial port
Serial.print(", Volts: ");
Serial.print(voltage);

// convert the voltage to temperature in degrees C
// the sensor changes 10 mV per degree

// the datasheet says there's a 500 mV offset

// ((voltage - 500 mV) times 100)

Serial.print(", degrees C: ");

float temperature = (voltage - .5) * 100;
Serial.println(temperature);

// if the current temperature is lower than the baseline turn off all LEDs
if (temperature < baselineTemp + 2) {
digitalWrite(2, LOW);
digitalWrite(3, LOW);
digitalWrite(4, LOW);
} // if the temperature rises 2-4 degrees, turn an LED on
else if (temperature >= baselineTemp + 2 && temperature < baselineTemp + 4) {
digitalWrite(2, HIGH);
digitalWrite(3, LOW);
digitalWrite(4, LOW);
} // if the temperature rises 4-6 degrees, turn a second LED on
else if (temperature >= baselineTemp + 4 && temperature < baselineTemp + 6) {
digitalWrite(2, HIGH);
digitalWrite(3, HIGH);
digitalWrite(4, LOW);
} // if the temperature rises more than 6 degrees, turn all LEDs on
else if (temperature >= baselineTemp + 6) {
digitalWrite(2, HIGH);
digitalWrite(3, HIGH);
digitalWrite(4, HIGH);
}
delay(1);

PROJECT #8 RGB LED and Color Mixer

O Walk through the "main” colors the RGB LED light can produce

O Show a rainbow of colors!

O Learn about functions - Breaking down tasks down into individual functions like this makes your code easier
to follow, and it allows parts of your code to be re-used.

O Werite your own color mixing function and add it o the sketch

Components:
3 300 Q Resistors
RGB LED

Notice the order of the pins. The RGB
LED has 4 legs.

1. RED

2: GROUND

3: GREEN

4: BLUE

You will use the analogWrite function of
Arduino to control the color of the LED.

At first glance, RGB (Red, Green, Blue) LEDs look just like regular LEDs, however, inside the usual LED package,
there are actually three LEDs, one red, one green and yes, one blue. By controlling the brightness of each of the
individual LEDs you can mix pretty much any color you want.

We mix colors just like you would mix audio with a ‘mixing board" or paint on a palette - by adjusting the
brightness of each of the three LEDs. The hard way to do this would be to use different value resistors (or
variable resistors) as we played with in lesson 2. That's a lot of work! Fortunately for us, the Arduino has

an analogWrite function that you can use with pins marked with a ~ to output a variable amount of power to the
appropriate LEDs.

Colors

The reason that you can mix any color you like by varying the quantities of red, green and blue light is that
your eye has three types of light receptor in it (red, green and blue). Your eye and brain process the amounts
of red, green and blue and convert it into a color of the spectrum.

In a way, by using the three LEDs we are playing a trick on the eye. This same idea is used in TVs, where the
LCD has red, green and blue color dots next to each other making up each pixel.

If we set the brightness of all three LEDs to be the same, then the overall color of the light will be white. If
we fturn off the blue LED, so that just the red and green LEDs are the same brightness, then the light will
appear yellow.

We can control the brightness of each of the red, green and blue parts of the LED separately, making it
possible to mix any color we like.

Black is not so much a color as an absense of light. So the closest we can come to black with our LED is to
turn off all three colors.

O oo~NOUVTL A WN

vunuvnunununun s bbb DDA, EDEDWWWWWWWWWWNNNNNNNNNDNRR R 2B 9 |9 |9 |9 |93 |2
OUVE WNRPEPOWOLONOOTUEWNRPOOWOWOOLONOUE WNRERESOSWOWOLONOULAEWNREREOOWOOLONOULEWNERES®

58
59
60
61
62
63

/3% 3% 3 3 B B B R Ok o oF ok K 3K 3K 3 3 3 B B B B R R R Of oF oF ok K 3K 3K 3 3 3 6 B B B B R R R OF oF K K 3K 3K 3 K 3 B B OO ROk Ok Ok

* Example sketch -- RGB LED Draw a schematic
) of this circuit in your
* Make an RGB LED display a rainbow of colors! l\ o .
rduino Schematic
* Breaking down tasks down into individual functions like this Handout

* makes your code easier to follow, and it allows.

* parts of your code to be re-used. REMEMBER to fake photos of each
“ project and challenge!

s 3 3 3k 3 3K ko 3k K o K ok oK K ok K K ok K ok ok Kk K ok ok K K ok K koK K o K ok o ok ko K ok ok K ok ok K ok kR ok ok kR ok Rk kR Rk /

const int RED_PIN = 7;
const int GREEN_PIN = 6;
const int BLUE_PIN = 5;

const int DISPLAY_TIME = 1000; // used in mainColors() to determine the
// length of time each color is displayed.

void setup() //Configure the Arduino pins to be outputs to drive the LEDs
{

pinMode(RED_PIN, OUTPUT);

pinMode(GREEN_PIN, OUTPUT);

pinMode(BLUE_PIN, OUTPUT);

}

void loop()

{ }

// select a function below to test

//mainColors(); // Red, Green, Blue, Yellow, Cyan, Purple, White
//showSpectrum(); // Gradual fade from Red to Green to Blue to Red

}

/3% % % 3 kK K 3 K K K K K K K K Kk K ok K ok K K K ok K K K Kk oK ok kK ok K ok o K ok K K ok K K ok ok K ok ok K ok ok K R K K kK

* void mainColors()
* This function displays the eight "main" colors that the RGB LED
* can produce.

/% e e ok ok ok ok ok ok 3k 3k 3 e e e e o e e ke ke ok ok ok ok ok ok Sk 3k 3 e e e e e ek ok ok ok ok ok ok ok ok sk ke e o e e ke ko ok ok ok ok ok K K/

void mainColors()

{
// all LEDs off
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

// Red

digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

// Green

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

// Blue

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);
delay(DISPLAY_TIME);

64 // Yellow (Red and Green)

65 digitalWrite(RED_PIN, HIGH);
66 digitalWrite(GREEN_PIN, HIGH);
67 digitalWrite(BLUE_PIN, LOW);
68 delay(DISPLAY_TIME);

69

70 // Cyan (Green and Blue)

71 digitalWrite(RED_PIN, LOW);

72 digitalWrite(GREEN_PIN, HIGH);
73 digitalWrite(BLUE_PIN, HIGH);
74 delay(DISPLAY_TIME);

75

76 // Purple (Red and Blue)

77 digitalWrite(RED_PIN, HIGH);
78 digitalWrite(GREEN_PIN, LOW);
79 digitalWrite(BLUE_PIN, HIGH);
80 delay(DISPLAY_TIME);

81

82 // White (turn all the LEDs on)
83 digitalWrite(RED_PIN, HIGH);
84 digitalWrite(GREEN_PIN, HIGH);
85 digitalWrite(BLUE_PIN, HIGH);
86 delay(DISPLAY_TIME);

87 %

gg /**
90 | * void showSpectrum()

91 *

92 | * Steps through all the colors of the RGB LED, displaying a rainbow.

93 * showSpectrum() calls a function RGB(int color) that translates a number

94 * from @ to 767 where @ = all RED, 767 = all RED

95 *

96 /*

97

98 void showSpectrum()

99 {

100 for (int x = @; X <= 767; X++)

101 {

102 RGB(x); // Increment x and call RGB() to progress through colors.

103 delay(10); // Delay for 10 ms (1/100th of a second) - to help the "smoothing"
104 3}

105 }

106

107

108

sk o ok R o ok R o Rk R o Rk o Rk R Rk o Rk o Rk K Rk o Rk K Rk o Rk Rk R KoK R kR KK/

MORE

LQQ |/ ok sk o o o o o ok ko koo o o o o o o o o o o K K K K kKK o o o o o o o o o o o K K K K K K KKK K K K ok ok

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

*

L I R S N I I BN S I N N NN R R N

*

void RGB(int color)

RGB(###) displays a single color on the RGB LED.

Call RGB(###) with the number of a color you want

to display. For example, RGB(@) displays pure RED, RGB(255)
displays pure green.

This function translates a number between @ and 767 into a
specific color on the RGB LED. If you have this number count
through the whole range (@ to 767), the LED will smoothly
change color through the entire spectrum.

The "base" numbers are:

(7] = pure red

255 = pure green

511 = pure blue

767 = pure red (again)

Numbers between the above colors will create blends. For
example, 640 is midway between 512 (pure blue) and 767

(pure red). It will give you a 50/50 mix of blue and red,
resulting in purple.

132 /***/

133 void RGB(int color)

134 {
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161
162
163
164
165 }

int redIntensity;

int greenlntensity;

int blueIntensity;

color = constrain(color, @, 767); // constrain the input value to a range of values from @ to 767

// if statement breaks down the "color" into three ranges:

if (color <= 255) // RANGE 1 (@ - 255) - red to green

{
redIntensity = 255 - color; // red goes from on to off
greenIntensity = color; // green goes from off to on
blueIlntensity = 0; // blue is always off

}

else if (color <= 511) // RANGE 2 (256 - 511) - green to blue

{
redIntensity = 0; // red is always off
greenIntensity = 511 - color; // green on to off
blueIntensity = color - 256; // blue off to on

}

else // RANGE 3 (>= 512)- blue to red

{
redIntensity = color - 512; // red off to on
greenlntensity = 0; // green is always off
blueIntensity = 767 - color; // blue on to off

}

// "send" intensity values to the Red, Green, Blue Pins using analogWrite()
analogWrite(RED_PIN, redIntensity);

analogWrite(GREEN_PIN, greenIntensity);

analogWrite(BLUE_PIN, blueIntensity);

REQUIRED CHALLENGES:

1. Add your own function to the program that will just display a solid olive color LED.

2. Add your own function to the program that will cycle through 8 different non-standard colors. Make sure you
indicate in your comments what the colors are. You may need to refer to a RGB color chart.

3. Be Creative! Think of something else you can program with the RGB LED and "just do it!"

