Choose a word or term that best completes each statement.

1. If both compositions result in the _____, then the functions are inverse functions.

ANSWER: identity function

2. In a(n)_____, the results of one function are used to evaluate a second function.

ANSWER: composition of functions

3. Radicals are ______ if *both* the index and the radicand are identical.

ANSWER: like radical expressions

4. When there is more than one real root, the nonnegative root is called the_____.

ANSWER: principal root

5. To eliminate radicals from a denominator or fractions from a radicand, you use a process called_____.

ANSWER: rationalizing the denominator

6. Equations with radicals that have variables in the radicands are called_____.

ANSWER: radical equations

7. Two relations are ______ if and only if one relation contains the element (b, a) when the other relation contains the element (a, b).

ANSWER: inverse relations

8. When solving a radical equation, sometimes you will obtain a number that does not satisfy the original

equation. Such a number is called a(n)

ANSWER: extraneous solution

9. The square root function is a type of _____

ANSWER: radical function

Find $[f \circ g](x)$ and $[g \circ f](x)$.

10.
$$\frac{f(x) = 2x + 1}{g(x) = 4x - 5}$$

ANSWER: $[f \circ g](x) = 8x - 9$ $[g \circ f](x) = 8x - 1$

11.
$$\frac{f(x) = x^2 + 1}{g(x) = x - 7}$$

ANSWER: $[f \circ g](x) = x^2 - 14x + 50$ $[g \circ f](x) = x^2 - 6$ 12. $\frac{f(x) = x^2 + 4}{g(x) = -2x + 1}$

ANSWER:

 $[f \circ g](x) = 4x^2 - 4x + 5$ $[g \circ f](x) = -2x^2 - 7$

 $13. \quad \frac{f(x) = 4x}{g(x) = 5x - 1}$

ANSWER:

 $[f \circ g](x) = 20x - 4$ $[g \circ f](x) = 20x - 1$

 $14. \frac{f(x) = x^3}{g(x) = x - 1}$

ANSWER:

 $[fog](x) = x - 3x^{2} + 3x - 1$ $[gof](x) = x^{3} - 1$

15. $\frac{f(x) = x^2 + 2x - 3}{g(x) = x + 1}$

ANSWER:

 $[f \circ g](x) = x^2 + 4x$ $[g \circ f](x) = x^2 + 2x - 2$

16. **MEASUREMENT** The formula f = 3y converts yards y to feet f and $f = \frac{n}{12}$ converts inches n to feet f. Write a composition of functions that converts yards to inches.

ANSWER: n =36y

Find the inverse of each function. Then graph the function and its inverse.

$$17. f(x) = 5x - 6$$

ANSWER:

$$f^{-1}(x) = \frac{x+1}{5}$$

18. f(x) = -3x - 5

ANSWER:

 $f^{-1}\left(x\right) = \frac{x+5}{-3}$

19.
$$f(x) = \frac{1}{2}x + 3$$

ANSWER:

 $f^{-1}(x) = 2x - 6$

$$20. f(x) = \frac{4x+1}{5}$$

ANSWER:
$$f^{-1}(x) = \frac{5x-1}{4}$$

ANSWER:
$$f^{-1}(x) = \pm \sqrt{x}$$

22. $f(x) = (2x+1)^2$

ANSWER:

 $f^{-1}(x) = \frac{-1 \pm \sqrt{x}}{2}$

23. **SHOPPING** Samuel bought a computer. The sales tax rate was 6% of the sale price, and he paid \$50 for shipping. Find the sale price if Samuel paid a total of \$1322.

ANSWER:

\$1200

Use the horizontal line test to determine whether the inverse of each function is also a function.

24. $f(x) = 3x^2$

ANSWER: No

25. $h(x) = x^3 - 3$

ANSWER:

Yes

26.
$$g(x) = -3x^4 + 2x - 1$$

ANSWER: No

27. $g(x) = 4x^3 - 5x$

ANSWER: No

28. $f(x) = -3x^5 + x^2 - 3$

ANSWER: No

29. $h(x) = 4x^4 - 5x$

ANSWER: No

30. **FINANCIAL LITERACY** During the last month, Jonathan has made two deposits of \$45, made a deposit of double his original balance, and has withdrawn \$35 five times. His balance is now \$189. Write an equation that models this problem. How much money did Jonathan have in his account at the beginning of the month?

ANSWER:

x + 2(45) + 2x - 5(35) = 189; about \$91.33

Graph each function. State the domain and range.

31. $f(x) = \sqrt{3x}$

$$D = \{x \mid x \ge 0\}; R = \{f(x) \mid f(x) \ge 0\}$$

32. $f(x) = -\sqrt{6x}$

 $D = \{x \mid x \ge 0\}; R = \{f(x) \mid f(x) \le 0\}$

$$33. f(x) = \sqrt{x-7}$$

ANSWER:

$$\mathbf{D} = \{x \mid x \ge 7\}; \mathbf{R} = \{f(x) \mid f(x) \ge 0\}$$

$$34. f(x) = \sqrt{x+5} - 3$$

$$D = \{x \mid x^3 - 5\}; R = \{f(x) \mid f(x)^3 - 3\}$$

35.
$$f(x) = \frac{3}{4}\sqrt{x-1} + 5$$

$$D = \{x \mid x \ge 1\}; R = \{f(x) \mid f(x) \ge 5\}$$

$$36. \ f(x) = -\frac{1}{3}\sqrt{x+4} - 1$$

$$\mathbf{D} = \{x \mid x \ge -4\}; \mathbf{R} = \{f(x) \mid f(x) \le -1\}$$

37. GEOMETRY The area of a circle is given by the formula $A = \pi r^2$. What is the radius of a circle with an area of 300 square inches?

ANSWER: about 9.8 in.

Graph each inequality.

38. $y \ge \sqrt{x} + 3$

$$39. \ y > -\sqrt{x-1} + 2$$

40. $y < 2\sqrt{x-5}$

Simplify.

41. ±√121

ANSWER: ±11

42. ∛−125

ANSWER: -5

43. $\sqrt{(-6)^2}$

ANSWER: 6

44. $\sqrt{-(x+3)^4}$

ANSWER: $i(x+3)^2$

$45. \sqrt[6]{(x^2+2)^{18}}$ ANSWER: $(x^2+2)^3$ $46. \sqrt[3]{27(x+3)^3}$
ANSWER: 3(x + 3)
47. $\sqrt[4]{a^8b^{12}}$
ANSWER: $a^2 b^3 $
$48. \sqrt[5]{243x^{10}y^{25}}$
ANSWER: $3x^2y^5$
49. PHYSICS The velocity <i>v</i> of an object can be defined as $v = \sqrt{\frac{2K}{m}}$, where <i>m</i> is the mass of an object and <i>K</i> is the kinetic energy in joules. Find the velocity in meters per second of an object with a mass of 17 grams and a kinetic energy of 850 joules.
ANSWER: 10 m/s
Simplify.
50. ∛54

ANSWER: 3∛2

51. $\sqrt{144a^3b^5}$	56. $\frac{3}{5+\sqrt{2}}$
ANSWER: $12ab^2\sqrt{ab}$	ANSWER: $\frac{15-3\sqrt{2}}{22}$
52. $4\sqrt{6y} \cdot 3\sqrt{7x^2y}$	23
ANSWER: $12 x y \sqrt{42}$	$57. \ \frac{\sqrt{3}}{\sqrt{5} - \sqrt{6}}$
	ANSWER:
53. $6\sqrt{72} + 7\sqrt{98} - \sqrt{50}$	$-\sqrt{15} - 3\sqrt{2}$
	58. GEOMETH of the rectan
ANSWER: $80\sqrt{2}$	
54. $(6\sqrt{5} - 2\sqrt{2})(3\sqrt{5} + 4\sqrt{2})$	8 + √3
	ANSWER:

ANSWER:

 $74 + 18\sqrt{10}$

55.
$$\frac{\sqrt{6m^5}}{\sqrt{p^{11}}}$$

ANSWER:
$$\frac{m^2\sqrt{6mp}}{p^6}$$

FRY What are the perimeter and the area angle?

perimeter = $28 + 2\sqrt{3} - 2\sqrt{2}$ units; area = $48 + 6\sqrt{3} - 8\sqrt{2} - \sqrt{6}$ units²

Simplify each expression.

59. $x^{\frac{1}{2}} \cdot x^{\frac{2}{3}}$

ANSWER: $x^{\frac{7}{6}}$

9

$68. \ 4 + \sqrt{3x - 1} = 8$	74. PHYSICS The formula $t = 2\pi \sqrt{\frac{\ell}{32}}$ represents the
ANSWER: $\frac{17}{3}$	swing of a pendulum, where <i>t</i> is the time in seconds for the pendulum to swing back and forth and ℓ is the length of the pendulum in feet. Find the length of a pendulum that makes one swing in 2.75 seconds.
$69. \ \sqrt{m+3} = \sqrt{2m+1}$	ANSWER: about 6.13 ft
ANSWER: 2	Solve each inequality. 75. $2 + \sqrt{3x-1} < 5$
70. $\sqrt{2x+3} = 3$	ANSWER: $\frac{1}{x} \le x \le \frac{10}{x}$
ANSWER: 3	3 3
· · · · · · · · · · · · ·	76. $\sqrt{3x+13} - 5 \ge 5$
71. $(x+1)^{\frac{1}{4}} = -3$	ANSWER: $x \ge 29$
ANSWER:	
	77. $6 - \sqrt{3x+5} \le 3$
72. $a^{\frac{1}{3}} - 4 = 0$	ANSWER:
ANSWER: 64	$x \ge \frac{1}{3}$
	78. $\sqrt{-3x+4} - 5 \ge 3$
73. $3(3x-1)^3 - 6 = 0$	ANSWER: $x \le -20$
3	79. $5 + \sqrt{2y - 7} < 5$
	ANSWER:

no solution

80. $3 + \sqrt{2x - 3} \ge 3$

ANSWER:

 $x \ge \frac{3}{2}$

81. $\sqrt{3x+1} - \sqrt{6+x} > 0$

ANSWER:

 $x > \frac{5}{2}$