Write a quadratic equation in standard form with the given $\operatorname{root}(\mathbf{s})$.

18. $-5, \frac{1}{2}$

SOLUTION:

Write the pattern.

$$
(x-p)(x-q)=0
$$

Replace p and q with -5 and $\frac{1}{2}$.

$$
\begin{aligned}
(x-(-5))\left(x-\frac{1}{2}\right) & =0 \\
(x+5)\left(x-\frac{1}{2}\right) & =0
\end{aligned}
$$

Use the FOIL method to multiply.

$$
\begin{aligned}
x(x)+x\left(-\frac{1}{2}\right)+5(x)+5\left(-\frac{1}{2}\right) & =0 \\
x^{2}-\frac{1}{2} x+5 x-\frac{5}{2} & =0
\end{aligned}
$$

Multiply each side by 2 .

$$
\begin{array}{r}
2 x^{2}-x+10 x-5=0 \\
2 x^{2}+9 x-5=0
\end{array}
$$

Factor each polynomial.
22. $32 x y+40 b x-12 a y-15 a b$

SOLUTION:

Factor $8 x$ from the first two terms and $-3 a$ from the last two terms.

$$
\begin{aligned}
& 32 x y+40 b x-12 a y-15 a b \\
& =8 x(4 y+5 b)-3 a(4 y+5 b)
\end{aligned}
$$

Factor $4 y+5 b$ from the two terms.

$$
\begin{gathered}
8 x(4 y+5 b)-3 a(4 y+5 b) \\
=(4 y+5 b)(8 x-3 a)
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
32 x y+40 b x-12 a y-15 a b \\
=(4 y+5 b)(8 x-3 a)
\end{gathered}
$$

30. $4 x^{2}+29 x+30$

SOLUTION:

Here, $a=4, b=29$ and $c=30$.
$a c=4(30)=120$
Find two factors of 120 whose sum is 29 .
$5(24)=120$ and $5+24=29$
Write $29 x$ as $5 x+24 x$.

$$
4 x^{2}+29 x+30=4 x^{2}+5 x+24 x+30
$$

Factor x from the first two terms and 6 from the last two terms.

$$
4 x^{2}+5 x+24 x+30=x(4 x+5)+6(4 x+5)
$$

Factor $4 x+5$ from the two terms.

$$
x(4 x+5)+6(4 x+5)=(4 x+5)(x+6)
$$

Therefore,
$4 x^{2}+29 x+30=(4 x+5)(x+6)$.
34. $18 x^{2} y^{2}-24 x y^{2}+36 y^{2}$

SOLUTION:

The GCF of the three terms is $6 y^{2}$. Factor the GCF.

$$
\begin{aligned}
& 18 x^{2} y^{2}-24 x y^{2}+36 y^{2} \\
& =6 y^{2}\left(3 x^{2}\right)-6 y^{2}(4 x)+6 y^{2}(6) \\
& =6 y^{2}\left(3 x^{2}-4 x+6\right)
\end{aligned}
$$

36. $12 x^{2}+13 x-14$

SOLUTION:

Here, $a=12, b=13$ and $c=-14$.

$$
a c=12(-14)=-168
$$

Find two factors of -168 whose sum is 13 .
$-8(21)=-168$ and $-8+21=13$
Write $13 x$ as $-8 x+21 x$.

$$
12 x^{2}+13 x-14=12 x^{2}-8 x+21 x-14
$$

Factor $4 x$ from the first two terms and 7 from the last two terms.

$$
\begin{aligned}
& 12 x^{2}-8 x+21 x-14 \\
& \quad=4 x(3 x-2)+7(3 x-2)
\end{aligned}
$$

Factor $3 x-2$ from the two terms.

$$
4 x(3 x-2)+7(3 x-2)=(3 x-2)(4 x+7)
$$

Therefore,
$12 x^{2}+13 x-14=(3 x-2)(4 x+7)$.

Solve each equation by factoring.

38. $x^{2}+4 x-45=0$

SOLUTION:

Find the factors of -45 whose sum is 4 .
$9(-5)=-45$ and $-5+9=4$

Write $4 x$ as $-5 x+9 x$.

$$
x^{2}+4 x-45=x^{2}-5 x+9 x-45=0
$$

Factor x from the first two terms and 9 from the last two terms.

$$
\begin{array}{r}
x^{2}+5 x-9 x-45=0 \\
x(x+5)-9(x+5)=0
\end{array}
$$

Factor $x+5$ from the two terms.

$$
(x+5)(x-9)=0
$$

Use the Zero Product Property.

$$
\begin{aligned}
(x+5)(x-9)=0 & \Rightarrow x+5=0 \quad \text { or } x-9=0 \\
& \Rightarrow x=-5 \quad \text { or } x=9
\end{aligned}
$$

Therefore,
the roots are -5 and 9 .
40. $x^{2}=121$

SOLUTION:

Write the equation with right side equal to zero.

$$
x^{2}-121=0
$$

Use the identity $a^{2}-b^{2}=(a+b)(a-b)$ to factor $x^{2}-121$.

$$
x^{2}-121=0
$$

$$
(x+11)(x-11)=0
$$

Use the Zero Product Property.
$(x+11)(x-11)=0$
$\Rightarrow x+11=0$ or $x-11=0$
$\Rightarrow x=-11$ or $x=11$
Therefore, the roots are -11 and 11 .
42. $-3 x^{2}-10 x+8=0$

SOLUTION:

Factor out -1 .

$$
\begin{aligned}
-1\left(3 x^{2}+10 x-8\right) & =0 \\
3 x^{2}+10 x-8 & =0
\end{aligned}
$$

Now factor $3 x^{2}+10 x-8$.
Here, $a=3, b=10$ and $c=-8$.
$a c=3(-8)=-24$
Find two factors of -24 whose sum is 10 .
$12(-2)=-24$ and $12+(-2)=10$
Write $10 x$ as $12 x+(-2 x)$.

$$
3 x^{2}+10 x-8=3 x^{2}+12 x-2 x-8
$$

Factor $3 x$ from the first two terms and -2 from the last two terms.

$$
\begin{aligned}
3 x^{2}+12 x-2 x-8 & =0 \\
3 x(x+4)-2(x+4) & =0
\end{aligned}
$$

Factor $x+4$ from the two terms.

$$
\begin{aligned}
3 x(x+4)-2(x+4) & =0 \\
(x+4)(3 x-2) & =0
\end{aligned}
$$

Use the Zero Product Property.

$$
\begin{aligned}
& (x+4)(3 x-2)=0 \\
& \Rightarrow x+4=0 \text { or } 3 x-2=0 \\
& \quad \Rightarrow x=-4 \quad \text { or } x=\frac{2}{3}
\end{aligned}
$$

Therefore, the roots are -4 and $\frac{2}{3}$.
44. GEOMETRY The hypotenuse of a right triangle is 1 centimeter longer than one side and 4 centimeters longer than three times the other side. Find the dimensions of the triangle.

SOLUTION:

Let x be the length of the one of the legs. Then the length of the hypotenuse is $3 x+4$ and that of the other leg is $3 x$ +3 .

By the Pythagorean Theorem, the sum of the squares of the lengths of the legs of a right triangle is equal to the square of the length of the hypotenuse.

$$
(3 x+4)^{2}=(3 x+3)^{2}+x^{2}
$$

Simplify and write in the standard form of a quadratic equation.

$$
\begin{aligned}
(3 x)^{2}+2(3 x)(4)+(4)^{2} & =(3 x)^{2}+2(3 x)(3)+(3)^{2}+(x)^{2} \\
9 x^{2}+24 x+16 & =9 x^{2}+18 x+9+x^{2} \\
x^{2}-6 x-7 & =0
\end{aligned}
$$

Find two factors of -7 whose sum is -6 .

$$
1(-7)=-7 \text { and } 1+(-7)=-6
$$

Write $-6 x$ as $x+(-7 x)$.

$$
x^{2}-6 x-7=0
$$

$$
x^{2}+x-7 x-7=0
$$

Factor x from the first two terms and -7 from the last two terms.

$$
x(x+1)-7(x+1)=0
$$

Factor $x+1$ from the two terms.

$$
(x+1)(x-7)=0
$$

Use the Zero Product Property.

$$
\begin{array}{rlr}
(x+1)(x-7)=0 & \Rightarrow x+1=0 & \text { or } x-7=0 \\
& \Rightarrow x=-1 & \text { or } x=7
\end{array}
$$

But x is a length; it cannot be negative. So, $x=7$.
Therefore, the lengths of the sides are $7 \mathrm{~cm}, 24 \mathrm{~cm}$, and 25 cm .
45. NUMBER THEORY Find two consecutive even integers with a product of 624.

SOLUTION:

Let the numbers be $2 n$ and $2(n+1)$.
Their product is 624 .

$$
\begin{aligned}
& 2 n(2(n+1))=624 \\
& 4 n^{2}+4 n-624=0
\end{aligned}
$$

Here, $a=4, b=4$ and $c=624$.

$$
a c=4(624)=2496
$$

Find two factors of 2496 whose sum is 4.
$52(-48)=2496$ and $52+(-48)=4$
Write $4 n$ as $52 n-48 n$.

$$
\begin{aligned}
4 n^{2}+4 n-624 & =0 \\
4 n^{2}+52 n-48 n-624 & =0
\end{aligned}
$$

Factor $4 n$ from the first two terms and -48 from the last two terms.

$$
\begin{aligned}
4 n^{2}+52 n-48 n-624 & =0 \\
4 n(n+13)-48(n+13) & =0
\end{aligned}
$$

Factor $n+13$ from the two terms.

$$
(4 n-48)(n+13)=0
$$

Use the Zero Product Property.

$$
\begin{array}{rlr}
(4 n-48)(n+13)=0 & \Rightarrow 4 n-48=0 & \text { or } n+13=0 \\
& \Rightarrow n=12 & \text { or } n=-13
\end{array}
$$

When $n=12$, the numbers are 24 and 26.
When $n=-13$, the numbers are -24 and -26 .

GEOMETRY Find x and the dimensions of each rectangle.

SOLUTION:

The area of a rectangle of length l and width w is $l \times w$.
Here, $l=x+2, w=x-2$, and area $=96$.

$$
\begin{aligned}
(x+2)(x-2) & =96 \\
x^{2}-4 & =96 \\
x^{2} & =100 \\
x & = \pm 10
\end{aligned}
$$

When $x=-10$, the dimensions of the rectangle becomes negative. So, $x=10$.
The length of the rectangle is 12 ft and width is 8 ft .

Solve each equation by factoring.

60. $27 x^{2}+5=48 x$

SOLUTION:

Write the equation with right side equal to zero.

$$
27 x^{2}-48 x+5=0
$$

Find factors of $27(5)=135$ whose sum is -48 .

$$
\begin{gathered}
-45(-3)=135 \text { and }-45+(-3)=-48 \\
27 x^{2}-45 x-3 x+5=0 \\
9 x(3 x-5)-1(3 x-5)=0 \\
(3 x-5)(9 x-1)=0 \\
\Rightarrow 3 x-5=0 \text { or } 9 x-1=0 \\
\Rightarrow x=\frac{5}{3} \quad \text { or } x=\frac{1}{9}
\end{gathered}
$$

Therefore, the roots are $\frac{5}{3}$ and $\frac{1}{9}$.

