1. $\lim _{x \rightarrow 9} x$

SOLUTION $\lim _{x \rightarrow 9} x=9$.
7. $\lim _{x \rightarrow 0.2}(3 x+4)$
solution Using the Sum Law and the Constant Multiple Law:

$$
\begin{aligned}
\lim _{x \rightarrow 0.2}(3 x+4) & =\lim _{x \rightarrow 0.2} 3 x+\lim _{x \rightarrow 0.2} 4 \\
& =3 \lim _{x \rightarrow 0.2} x+\lim _{x \rightarrow 0.2} 4=3(0.2)+4=4.6 .
\end{aligned}
$$

9. $\lim _{x \rightarrow-1}\left(3 x^{4}-2 x^{3}+4 x\right)$
solution Using the Sum Law, the Constant Multiple Law and the Powers Law:

$$
\begin{aligned}
\lim _{x \rightarrow-1}\left(3 x^{4}-2 x^{3}+4 x\right) & =\lim _{x \rightarrow-1} 3 x^{4}-\lim _{x \rightarrow-1} 2 x^{3}+\lim _{x \rightarrow-1} 4 x \\
& =3 \lim _{x \rightarrow-1} x^{4}-2 \lim _{x \rightarrow-1} x^{3}+4 \lim _{x \rightarrow-1} x \\
& =3(-1)^{4}-2(-1)^{3}+4(-1)=3+2-4=1
\end{aligned}
$$

11. $\lim _{x \rightarrow 2}(x+1)\left(3 x^{2}-9\right)$

SOLUTION Using the Product Law, the Sum Law and the Constant Multiple Law:

$$
\begin{aligned}
\lim _{x \rightarrow 2}(x+1)\left(3 x^{2}-9\right) & =\left(\lim _{x \rightarrow 2} x+\lim _{x \rightarrow 2} 1\right)\left(\lim _{x \rightarrow 2} 3 x^{2}-\lim _{x \rightarrow 2} 9\right) \\
& =(2+1)\left(3 \lim _{x \rightarrow 2} x^{2}-9\right) \\
& =3\left(3(2)^{2}-9\right)=9
\end{aligned}
$$

13. $\lim _{t \rightarrow 4} \frac{3 t-14}{t+1}$

SOLUTION Using the Quotient Law, the Sum Law and the Constant Multiple Law:

$$
\lim _{t \rightarrow 4} \frac{3 t-14}{t+1}=\frac{\lim _{t \rightarrow 4}(3 t-14)}{\lim _{t \rightarrow 4}(t+1)}=\frac{3 \lim _{t \rightarrow 4} t-\lim _{t \rightarrow 4} 14}{\lim _{t \rightarrow 4} t+\lim _{t \rightarrow 4} 1}=\frac{3 \cdot 4-14}{4+1}=-\frac{2}{5}
$$

15. $\lim (16 y+1)\left(2 y^{1 / 2}+1\right)$ $y \rightarrow \frac{1}{4}$
solution Using the Product Law, the Sum Law, the Constant Multiple Law and the Powers Law:

$$
\begin{aligned}
\lim _{y \rightarrow \frac{1}{4}}(16 y+1)\left(2 y^{1 / 2}+1\right) & =\left(\lim _{y \rightarrow \frac{1}{4}}(16 y+1)\right)\left(\lim _{y \rightarrow \frac{1}{4}}\left(2 y^{1 / 2}+1\right)\right) \\
& =\left(16 \lim _{y \rightarrow \frac{1}{4}} y+\lim _{y \rightarrow \frac{1}{4}} 1\right)\left(2 \lim _{y \rightarrow \frac{1}{4}} y^{1 / 2}+\lim _{y \rightarrow \frac{1}{4}} 1\right) \\
& =\left(16\left(\frac{1}{4}\right)+1\right)\left(2\left(\frac{1}{2}\right)+1\right)=10
\end{aligned}
$$

17. $\lim _{y \rightarrow 4} \frac{1}{\sqrt{6 y+1}}$
solution Using the Quotient Law, the Powers Law, the Sum Law and the Constant Multiple Law:

$$
\begin{aligned}
\lim _{y \rightarrow 4} \frac{1}{\sqrt{6 y+1}} & =\frac{1}{\lim _{y \rightarrow 4} \sqrt{6 y+1}}=\frac{1}{\sqrt{6 \lim _{y \rightarrow 4} y+1}} \\
& =\frac{1}{\sqrt{6(4)+1}}=\frac{1}{5}
\end{aligned}
$$

19. $\lim _{x \rightarrow-1} \frac{x}{x^{3}+4 x}$

SOLUTION Using the Quotient Law, the Sum Law, the Powers Law and the Constant Multiple Law:

$$
\lim _{x \rightarrow-1} \frac{x}{x^{3}+4 x}=\frac{\lim _{x \rightarrow-1} x}{\lim _{x \rightarrow-1} x^{3}+4 \lim _{x \rightarrow-1} x}=\frac{-1}{(-1)^{3}+4(-1)}=\frac{1}{5}
$$

21. $\lim _{t \rightarrow 25} \frac{3 \sqrt{t}-\frac{1}{5} t}{(t-20)^{2}}$
solution Using the Quotient Law, the Sum Law, the Constant Multiple Law and the Powers Law:

$$
\lim _{t \rightarrow 25} \frac{3 \sqrt{t}-\frac{1}{5} t}{(t-20)^{2}}=\frac{3 \sqrt{\lim _{t \rightarrow 25} t}-\frac{1}{5} \lim _{t \rightarrow 25} t}{\left(\lim _{t \rightarrow 25} t-20\right)^{2}}=\frac{3(5)-\frac{1}{5}(25)}{5^{2}}=\frac{2}{5}
$$

23. $\lim _{t \rightarrow \frac{3}{2}}\left(4 t^{2}+8 t-5\right)^{3 / 2}$

Solution Using the Powers Law, the Sum Law and the Constant Multiple Law:

$$
\lim _{t \rightarrow \frac{3}{2}}\left(4 t^{2}+8 t-5\right)^{3 / 2}=\left(4 \lim _{t \rightarrow \frac{3}{2}} t^{2}+8 \lim _{t \rightarrow \frac{3}{2}} t-5\right)^{3 / 2}=(9+12-5)^{3 / 2}=64
$$

25. Use the Quotient Law to prove that if $\lim _{x \rightarrow c} f(x)$ exists and is nonzero, then

$$
\lim _{x \rightarrow c} \frac{1}{f(x)}=\frac{1}{\lim _{x \rightarrow c} f(x)}
$$

SOLUTION Since $\lim _{x \rightarrow c} f(x)$ is nonzero, we can apply the Quotient Law:

$$
\lim _{x \rightarrow c}\left(\frac{1}{f(x)}\right)=\frac{\left(\lim _{x \rightarrow c} 1\right)}{\left(\lim _{x \rightarrow c} f(x)\right)}=\frac{1}{\lim _{x \rightarrow c} f(x)}
$$

27. $\lim _{x \rightarrow-4} f(x) g(x)$

SOLUTION $\lim _{x \rightarrow-4} f(x) g(x)=\lim _{x \rightarrow-4} f(x) \lim _{x \rightarrow-4} g(x)=3 \cdot 1=3$.
29. $\lim _{x \rightarrow-4} \frac{g(x)}{x^{2}}$

SOLUTION Since $\lim _{x \rightarrow-4} x^{2} \neq 0$, we may apply the Quotient Law, then applying the Powers Law:

$$
\lim _{x \rightarrow-4} \frac{g(x)}{x^{2}}=\frac{\lim _{x \rightarrow-4} g(x)}{\lim _{x \rightarrow-4} x^{2}}=\frac{1}{\left(\lim _{x \rightarrow-4} x\right)^{2}}=\frac{1}{16}
$$

31. Can the Quotient Law be applied to evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}$? Explain.
solution The limit Quotient Law cannot be applied to evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ since $\lim _{x \rightarrow 0} x=0$. This violates a condition of the Quotient Law. Accordingly, the rule cannot be employed.
32. Give an example where $\lim _{x \rightarrow 0}(f(x)+g(x))$ exists but neither $\lim _{x \rightarrow 0} f(x)$ nor $\lim _{x \rightarrow 0} g(x)$ exists.

SOLUTION Let $f(x)=1 / x$ and $g(x)=-1 / x$. Then $\lim _{x \rightarrow 0}(f(x)+g(x))=\lim _{x \rightarrow 0} 0=0$ However, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} 1 / x$ and $\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}-1 / x$ do not exist.

